# Visualize dimensionality reduction analysis of actin filaments Notebook contains steps for visualizing dimensionality reduction using PCA for actin fibers. - [Define visualization settings](#define-visualization-settings) - [Visualize inverse PCA](#visualize-inverse-pca) ```python if __name__ != "__main__": raise ImportError("This module is a notebook and is not meant to be imported") ``` ```python from pathlib import Path from subcell_pipeline.visualization.dimensionality_reduction import ( visualize_dimensionality_reduction, ) ``` ## Define visualization settings Define simulation and visualization settings that are shared between different simulation series. ```python # S3 bucket for input and output files bucket = "s3://subcell-working-bucket" # File key for PCA results dataframe pca_results_key = "actin_compression_pca_results.csv" # File key for PCA object pickle pca_pickle_key = "actin_compression_pca.pkl" # Temporary path to save visualization files temp_path: Path = Path(__file__).parents[2] / "viz_outputs" temp_path.mkdir(parents=True, exist_ok=True) # Select how PC distributions are shown # - True to scroll through the PC distributions over time # - False to show all together in one timestep distribution_over_time = True # Select if simulator distributions are shown # - True to show ReaDDy and Cytosim separately # - False to show all together simulator_detail = True # Ranges to sample for each PC sample_ranges: dict[str, list[list[float]]] = { "Combined": [ [-1200, 900], # pc1 [-550, 250], # pc2 ], "ReaDDy": [ [-1078, 782], # pc1 [-517, 154], # pc2 ], "Cytosim": [ [-1064, 758], # pc1 [-174, 173], # pc2 ], } # Select how PCs are saved # - True to save each PC in a separate file # - False to save all together separate_pcs = True # Number of samples for each PC distribution sample_resolution = 200 ``` ## Visualize inverse PCA Visualize PCA space for actin fibers. - Input: `actin_compression_pca_results.csv` and `actin_compression_pca.pkl` - Output: `(name)/(name).simularium` ```python visualize_dimensionality_reduction( bucket, pca_results_key, pca_pickle_key, distribution_over_time, simulator_detail, sample_ranges, separate_pcs, sample_resolution, str(temp_path), ) ```